

UI Software Organization

The user interface

 From previous class:
 Generally want to think of the “UI” as only one component of the

system
 Deals with the user
 Separate from the “functional core” (AKA, the “app”)

2

Separation of Concerns

 There are good software engineering reasons to do this
 Keep UI code separate from app code
 Isolate changes
 More modular implementation
 Different expertise needed
 Don’t want to iterate the whole thing

3

In practice, very hard to do...

 More and more interactive programs are tightly coupled to the UI
 Programs structured around UI concepts/flow
 UI structure “sneaks into” application

 Not always bad...
 Tight coupling can offer better feedback/performance

4

Separation of concerns is a
central theme of UI organization

 A continual challenge
 A continual tension and tradeoff

 Real separation of UI from application is almost a lost cause

5

Conceptual Overview of the UI

6

Input

Output

UI
Core

AppApp
Interface

UI Toolkit

Basic UI Flow

7

Input

Output

UI
Core

AppApp
Interface

UI Toolkit

How would you architect this?

 Tempting to architect systems around these boxes
 One module for input, one for output, etc.
 Has been tried (“Seeheim model”)
 Didn’t work well

8

Why “Big Box” architectures
don’t work well

 Modern (“direct manipulation”) interfaces tend to be collections of
quasi-independent agents
 Each interactor (“object of interest” on the screen) is separable
 Example: an on-screen button

 Produces “button-like” output
 Acts on input in a “button-like” way
 Etc.

9

Leads to object-based
architectures

 Each on-screen interactor corresponds to an object instance
 Common methods for

 Drawing output (button-like appearance)
 Handling input (what happens when I click)

 Objects are organized hierarchically at runtime
 Normally reflecting spatial containment relationships
 NOTE: different than class hierarchy created at development time

 Interactor trees

10

Challenge: maintaining separation
of concerns

 Trick is coming up with a separation that works quickly, simply, and
extensibly
 Even a single button may be hopelessly complex (pluggable looks-and-

feels anyone?)
 Needs to be extensible to new interactors
 What’s the right factoring for all this stuff?

 Will see some strategies later
 Basically: common O-O patterns to manage complexity

11

UI Toolkits

 System to provide development-time and runtime support for UIs
 Core functionality
 Input & output handling
 Connecting to the application

 Also: specific interaction techniques
 Library of interactors
 Look and feel (sometimes pluggable)

12

Categories of users

 Consumer
 End-user, albeit indirectly

 Programmers
 Interface designer
 Application builder
 Toolkit implementer/maintainer
 Interactor writer
 Tool builder
 Expert end-user (through scripting)

13

Toolkit functionality in detail
(Roadmap of topics)

 Core functions
 Hierarchy management

 Create, maintain, tear down tree of interactor objects

 Geometry management
 Dealing with coordinate systems
 On-screen bounds of interactors

 Interactor status/information management
 Is this interactor visible? Is it active?

14

Toolkit functionality in detail

 Output
 Layout

 Establishing the size and position of each object
 Both initially, and after a resize

 (Re)drawing
 Damage management

 Knowing what needs to be redrawn

 Localization and customization
 We won’t talk much about this...

15

Toolkit functionality in detail

 Input
 Picking

 Figuring out what interactors are “under” a given screen point

 Event dispatch, translation, handling
 This is where a lot of the work goes

16

Toolkit functionality in detail

 Application interface
 How the UI system connects with application code

 Callbacks
 Command objects
 Undo models
 ...

17

Example: Java Swing

 All functions of interactors encapsulated in base class
 javax.swing.JComponent
 All objects on-screen inherit from this class

 Terminology:
 interactor, widget, component, control, ...

18

Standard object-oriented
approach

 Base class (or interface) defines the set of things that every
interactor must do
 e.g., public void paintComponent(Graphics g);

 Subclasses provide specific specialized implementations
 Do the right drawing, input, etc., to be a button vs. a slider vs. ...

19

JComponent API defines methods
for

 Hierarchy management
 Geometry management
 Object status management
 Layout
 (Re)drawing
 Damage management
 Picking

20

In subclasses and other parts of
the toolkit:

 Input dispatch and handling
 Application interface
 Pluggable looks and feels
 Undo support
 Accessibility

21

Hierarchy Management

 Swing interfaces are trees of components
 To make something appear, you must add

it to the tree
 Swing takes care of many of the details

from there
 Screen redraw
 Input dispatch

22

JFrame

JPanel

JButtonJButton JButton

Hierarchy Management

 Lots of methods for manipulating the tree
 add(), remove(), removeAll(), getComponents(), getComponentCount(),

isAncestorOf(), ...

 Common mistake
 If nothing shows up on the screen, make sure you’ve added it!

23

Geometry Management

 Every component maintains its own geometry:
 Bounding box: getX(), getY(), getWidth(), getHeight()

 X,Y are relative to parent
 i.e., 0,0 is at parent’s top left corner
 Other operations: setSize(), setLocation(), setBounds(), getSize(),

getLocation(), getBounds()

 All drawing happens within that box
 System clips to bounding box
 Including output of children!

 Drawing is relative to top-left corner
 Each component has its own coordinate system

24

Object Status

 Each component maintains information about its “state”
 isEnabled(), setEnabled()
 isVisible(), setVisible()

 Lots of other methods of lesser importance

25

Each component handles:

 Layout (we’ll talk about this later...)
 Drawing

 Each component knows how to (re)create its appearance based on its
current state

 Responsible for painting three items, in order:
1. Component

2. Borders

3. Children

 paintComponent(), paintBorder(), paintChildren()
 These are the only places to draw on the screen!!!
 Automatically called by JComponent’s paint() method, which is itself

called by the Swing RepaintManager (figures out “damaged” regions)

26

Damage Management

 Damage: areas of a component that need to be redrawn
 Sometimes: computed automatically by Swing RepaintManager

 e.g., if another window is dragged over your component, or your
component is resized

 Other times: you need to flag damage yourself to tell the system that
something in your internal state has changes and your on-screen image
may not be correct
 e.g., your component needs to change the color of a displayed label

 Managing damage yourself:
 repaint(Rectangle r)
 Puts the indicated rectangle on the RepaintManager’s queue of regions

to be redrawn

 Terminology: damage is not a Swing term; generic
27

Picking

 Determine if a point is “inside” a component
 contains(int x, int y)
 Is the point inside the bounding box of this component (uses local

coordinate system of component)

 Terminology: likewise, picking is not a Swing term

28

Other stuff

 Input (we’ll talk about this later...)
 Application interface

 Glue between component and application functionality
 Not directly in component, but there is a convention for how to

associate your functionality with a component
 Callbacks: you register code with a component to say “call this code

when something happens”

 Terminology: Swing uses the term listener for a piece of application
code that will be called back in response to something happening
 The code “listens for” something happening

29

Listeners

 Any given component may have multiple situations in which it invokes
a listener
 Button pressed, list scrolled, list item selected
 Different types of listeners representing different types of things happening

 Therefore, each component has a list of listeners for each situation
 Standardized names for accessing these lists

 addPropertyChangeListener(), getPropertyChangeListeners(),
removePropertyChangeListener()

 addActionListener(), getActionListeners(), removeActionListener()

30

More on listeners

 There is generally a separate interface for each type of listener
 PropertyChangeListener
 ActionListener

 Your code must implement the appropriate listener interface and be
registered with the list of appropriate list of listeners on the
appropriate component
 Example: button press causes listeners on the button’s ActionListener

list to be called
 Define your code so that it implements ActionListener
 Register it with the button using addActionListener()

31

Events

 Most listener interfaces define methods that take an event object that
describes what just happened

 Separate classes of events for each listener interface
 ActionListener: ActionEvent
 MouseListener: MouseEvent

 Passed as a parameter containing details of what happened
 e.g., MouseListener: mouse coordinates, whether it was pressed,

released, etc.

32

