

UI Software Organization

The user interface

 From previous class:
 Generally want to think of the “UI” as only one component of the

system
 Deals with the user
 Separate from the “functional core” (AKA, the “app”)

2

Separation of Concerns

 There are good software engineering reasons to do this
 Keep UI code separate from app code
 Isolate changes
 More modular implementation
 Different expertise needed
 Don’t want to iterate the whole thing

3

In practice, very hard to do...

 More and more interactive programs are tightly coupled to the UI
 Programs structured around UI concepts/flow
 UI structure “sneaks into” application

 Not always bad...
 Tight coupling can offer better feedback/performance

4

Separation of concerns is a
central theme of UI organization

 A continual challenge
 A continual tension and tradeoff

 Real separation of UI from application is almost a lost cause

5

Conceptual Overview of the UI

6

Input

Output

UI
Core

AppApp
Interface

UI Toolkit

Basic UI Flow

7

Input

Output

UI
Core

AppApp
Interface

UI Toolkit

How would you architect this?

 Tempting to architect systems around these boxes
 One module for input, one for output, etc.
 Has been tried (“Seeheim model”)
 Didn’t work well

8

Why “Big Box” architectures
don’t work well

 Modern (“direct manipulation”) interfaces tend to be collections of
quasi-independent agents
 Each interactor (“object of interest” on the screen) is separable
 Example: an on-screen button

 Produces “button-like” output
 Acts on input in a “button-like” way
 Etc.

9

Leads to object-based
architectures

 Each on-screen interactor corresponds to an object instance
 Common methods for

 Drawing output (button-like appearance)
 Handling input (what happens when I click)

 Objects are organized hierarchically at runtime
 Normally reflecting spatial containment relationships
 NOTE: different than class hierarchy created at development time

 Interactor trees

10

Challenge: maintaining separation
of concerns

 Trick is coming up with a separation that works quickly, simply, and
extensibly
 Even a single button may be hopelessly complex (pluggable looks-and-

feels anyone?)
 Needs to be extensible to new interactors
 What’s the right factoring for all this stuff?

 Will see some strategies later
 Basically: common O-O patterns to manage complexity

11

UI Toolkits

 System to provide development-time and runtime support for UIs
 Core functionality
 Input & output handling
 Connecting to the application

 Also: specific interaction techniques
 Library of interactors
 Look and feel (sometimes pluggable)

12

Categories of users

 Consumer
 End-user, albeit indirectly

 Programmers
 Interface designer
 Application builder
 Toolkit implementer/maintainer
 Interactor writer
 Tool builder
 Expert end-user (through scripting)

13

Toolkit functionality in detail
(Roadmap of topics)

 Core functions
 Hierarchy management

 Create, maintain, tear down tree of interactor objects

 Geometry management
 Dealing with coordinate systems
 On-screen bounds of interactors

 Interactor status/information management
 Is this interactor visible? Is it active?

14

Toolkit functionality in detail

 Output
 Layout

 Establishing the size and position of each object
 Both initially, and after a resize

 (Re)drawing
 Damage management

 Knowing what needs to be redrawn

 Localization and customization
 We won’t talk much about this...

15

Toolkit functionality in detail

 Input
 Picking

 Figuring out what interactors are “under” a given screen point

 Event dispatch, translation, handling
 This is where a lot of the work goes

16

Toolkit functionality in detail

 Application interface
 How the UI system connects with application code

 Callbacks
 Command objects
 Undo models
 ...

17

Example: Java Swing

 All functions of interactors encapsulated in base class
 javax.swing.JComponent
 All objects on-screen inherit from this class

 Terminology:
 interactor, widget, component, control, ...

18

Standard object-oriented
approach

 Base class (or interface) defines the set of things that every
interactor must do
 e.g., public void paintComponent(Graphics g);

 Subclasses provide specific specialized implementations
 Do the right drawing, input, etc., to be a button vs. a slider vs. ...

19

JComponent API defines methods
for

 Hierarchy management
 Geometry management
 Object status management
 Layout
 (Re)drawing
 Damage management
 Picking

20

In subclasses and other parts of
the toolkit:

 Input dispatch and handling
 Application interface
 Pluggable looks and feels
 Undo support
 Accessibility

21

Hierarchy Management

 Swing interfaces are trees of components
 To make something appear, you must add

it to the tree
 Swing takes care of many of the details

from there
 Screen redraw
 Input dispatch

22

JFrame

JPanel

JButtonJButton JButton

Hierarchy Management

 Lots of methods for manipulating the tree
 add(), remove(), removeAll(), getComponents(), getComponentCount(),

isAncestorOf(), ...

 Common mistake
 If nothing shows up on the screen, make sure you’ve added it!

23

Geometry Management

 Every component maintains its own geometry:
 Bounding box: getX(), getY(), getWidth(), getHeight()

 X,Y are relative to parent
 i.e., 0,0 is at parent’s top left corner
 Other operations: setSize(), setLocation(), setBounds(), getSize(),

getLocation(), getBounds()

 All drawing happens within that box
 System clips to bounding box
 Including output of children!

 Drawing is relative to top-left corner
 Each component has its own coordinate system

24

Object Status

 Each component maintains information about its “state”
 isEnabled(), setEnabled()
 isVisible(), setVisible()

 Lots of other methods of lesser importance

25

Each component handles:

 Layout (we’ll talk about this later...)
 Drawing

 Each component knows how to (re)create its appearance based on its
current state

 Responsible for painting three items, in order:
1. Component

2. Borders

3. Children

 paintComponent(), paintBorder(), paintChildren()
 These are the only places to draw on the screen!!!
 Automatically called by JComponent’s paint() method, which is itself

called by the Swing RepaintManager (figures out “damaged” regions)

26

Damage Management

 Damage: areas of a component that need to be redrawn
 Sometimes: computed automatically by Swing RepaintManager

 e.g., if another window is dragged over your component, or your
component is resized

 Other times: you need to flag damage yourself to tell the system that
something in your internal state has changes and your on-screen image
may not be correct
 e.g., your component needs to change the color of a displayed label

 Managing damage yourself:
 repaint(Rectangle r)
 Puts the indicated rectangle on the RepaintManager’s queue of regions

to be redrawn

 Terminology: damage is not a Swing term; generic
27

Picking

 Determine if a point is “inside” a component
 contains(int x, int y)
 Is the point inside the bounding box of this component (uses local

coordinate system of component)

 Terminology: likewise, picking is not a Swing term

28

Other stuff

 Input (we’ll talk about this later...)
 Application interface

 Glue between component and application functionality
 Not directly in component, but there is a convention for how to

associate your functionality with a component
 Callbacks: you register code with a component to say “call this code

when something happens”

 Terminology: Swing uses the term listener for a piece of application
code that will be called back in response to something happening
 The code “listens for” something happening

29

Listeners

 Any given component may have multiple situations in which it invokes
a listener
 Button pressed, list scrolled, list item selected
 Different types of listeners representing different types of things happening

 Therefore, each component has a list of listeners for each situation
 Standardized names for accessing these lists

 addPropertyChangeListener(), getPropertyChangeListeners(),
removePropertyChangeListener()

 addActionListener(), getActionListeners(), removeActionListener()

30

More on listeners

 There is generally a separate interface for each type of listener
 PropertyChangeListener
 ActionListener

 Your code must implement the appropriate listener interface and be
registered with the list of appropriate list of listeners on the
appropriate component
 Example: button press causes listeners on the button’s ActionListener

list to be called
 Define your code so that it implements ActionListener
 Register it with the button using addActionListener()

31

Events

 Most listener interfaces define methods that take an event object that
describes what just happened

 Separate classes of events for each listener interface
 ActionListener: ActionEvent
 MouseListener: MouseEvent

 Passed as a parameter containing details of what happened
 e.g., MouseListener: mouse coordinates, whether it was pressed,

released, etc.

32

